
4/1/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Step-by-step minimization

Introduction

• In this topic, we will

– Describe step-by-step minimization

– Discuss some issues

– Look at an implementation

– Look at an example

Optimization

2

1

2

4/1/2021

2

Step-by-step minimization

• Here is a straight-forward idea:

– Keep stepping in the direction that appears to be going towards
a minimum until you start going back up again

– Once at this point, try again with a smaller step size

Optimization

3

Step-by-step minimization

• Given a real-valued function f (x), decide upon some estep that
will specify the accuracy required

• Choose an initial point x0 and an initial step size h

1. Given xk, calculate f (xk), f (xk – h) and f (xk + h)

a. If f (xk – h) ≤ f (xk) and f (xk – h) ≤ f (xk + h),
evaluate f (xk – 2h), f (xk – 3h), …
until f (xk – (n + 1)h) > f (xk – nh) and set xk+1 ← xk – nh

b. If f (xk + h) ≤ f (xk) and f (xk + h) ≤ f (xk – h),
evaluate f (xk + 2h), f (xk + 3h), …
until f (xk + (n + 1)h) > f (xk + nh) and set xk+1 ← xk + nh

c. Otherwise, set xk+1 ← xk

2. If h < estep, we are finished;

otherwise, divide h by two and return to Step 1

Optimization

4

3

4

4/1/2021

3

Benefits

• A nice property of this algorithm is that once it is within the
vicinity of a minima, it becomes a binary search

• If, however, the minima is very far away from x0 and h is small,
it may require a significant number of steps to find it

• Also, if h is too large, we may completely miss a given minima

Optimization

5

xk xk+h xk+2h xk+3h xk +4h

Implementation

std::pair<double, double> step(

double f(double x), double x0, double h,

double eps_step, double eps_abs,

unsigned int max_iterations

) {

double f0{ f(x0) };

for (unsigned int k{0}; k < max_iterations; ++k) {

double fn{ f(x0 - h) };

double fp{ f(x0 + h) };

double x1, f1;

Optimization

6

5

6

4/1/2021

4

Implementation
if ((f0 <= fn) && (f0 <= fp)) {

if ((h < eps_step) && ((std::min(fp, fn) - f0) < eps_abs)) {

return std::make_pair(x0, f0);

}

h /= 2.0;

continue;

}

x1 = x0 - h;

f1 = fn;

fn = f(x1 - h);

while (fn < f1) {

++k;

x1 -= h;

f1 = fn;

fn = f(x1 - h);

}

} else {

Optimization

7

else if (fn <= fp) {

Implementation} else {

x1 = x0 + h;

f1 = fp;

fp = f(x1 + h);

while (fp < f1) {

++k;

x1 += h;

f1 = fp;

fp = f(x1 + h);

}

}

if ((std::abs(x0 - x1) < eps_step) && ((f0 - f1) < eps_abs)) {

return std::make_pair(x1, f1);

}

x0 = x1;

f0 = f1;

h /= 2.0;

}

}

return std::make_pair(NAN, NAN);

}

Optimization

8

else {

7

8

4/1/2021

5

Example

• Minimize sin(x) with x0 = 0 and h = 1

k h xk f (xk)

1 1 –1 –0.8414709848078965

2 1 –2 –0.9092974268256817

3 0.5 –1.5 –0.9974949866040544

4 0.25 –1.5

5 0.125 –1.625 –0.9985313405398316

6 0.0625 –1.5625 –0.9999655856782489

7 0.03125 –1.5625

8 0.015625 –1.578125 –0.9999731453947223

9 0.0078125 –1.5703125 –0.9999998829558185

10 0.00390625 –1.5703125

11 0.001953125 –1.5703125

12 0.0009765625 –1.5703125

13 0.00048828125 –1.57080078125 –0.9999999999900789

Optimization

9

Summary

• Following this topic, you now

– Understand the step-by-step minimization technique

– Are aware of the benefits and issues

– Have seen an implementation

– Have seen an example

Optimization

10

9

10

4/1/2021

6

References

[1] https://en.wikipedia.org/wiki/Mathematical_optimization

Optimization

11

Acknowledgments

None so far.

Optimization

12

11

12

4/1/2021

7

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Optimization

13

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Optimization

14

13

14

