

1

Step-by-step minimization

- Here is a straight-forward idea:
- Keep stepping in the direction that appears to be going towards a minimum until you start going back up again
- Once at this point, try again with a smaller step size

Step-by-step minimization

- Given a real-valued function $f(x)$, decide upon some $\varepsilon_{\text {step }}$ that will specify the accuracy required
- Choose an initial point x_{0} and an initial step size h

1. Given x_{k}, calculate $f\left(x_{k}\right), f\left(x_{k}-h\right)$ and $f\left(x_{k}+h\right)$
a. If $f\left(x_{k}-h\right) \leq f\left(x_{k}\right)$ and $f\left(x_{k}-h\right) \leq f\left(x_{k}+h\right)$,
evaluate $f\left(x_{k}-2 h\right), f\left(x_{k}-3 h\right), \ldots$
until $f\left(x_{k}-(n+1) h\right)>f\left(x_{k}-n h\right)$ and set $x_{k+1} \leftarrow x_{k}-n h$
b. If $f\left(x_{k}+h\right) \leq f\left(x_{k}\right)$ and $f\left(x_{k}+h\right) \leq f\left(x_{k}-h\right)$,
evaluate $f\left(x_{k}+2 h\right), f\left(x_{k}+3 h\right), \ldots$
until $f\left(x_{k}+(n+1) h\right)>f\left(x_{k}+n h\right)$ and set $x_{k+1} \leftarrow x_{k}+n h$
c. Otherwise, set $x_{k+1} \leftarrow x_{k}$
2. If $h<\varepsilon_{\text {step }}$, we are finished;
otherwise, divide h by two and return to Step 1

Benefits

- A nice property of this algorithm is that once it is within the vicinity of a minima, it becomes a binary search
- If, however, the minima is very far away from x_{0} and h is small,
it may require a significant number of steps to find it
- Also, if h is too large, we may completely miss a given minima

Implementation

```
if ( (f0 <= fn) && (f0 <= fp) ) {
        if ( (h < eps_step) && ( (std::min(fp, fn) - f0) < eps_abs) ) {
            return std::make_pair( x0, f0 );
        }
        h /= 2.0;
        continue;
} else if ( fn <= fp ) {
    x1 = x0 - h;
        f1 = fn;
        fn = f( x1 - h );
        while ( fn < f1 ) {
        ++k;
        x1 -= h;
        f1 = fn;
        fn = f( x1 - h );
        }
} else {
```

7

Example

- Minimize $\sin (x)$ with $x_{0}=0$ and $h=1$

k	h	x_{k}	$f\left(x_{k}\right)$
1	1	-1	-0.8414709848078965
2	1	-2	-0.9092974268256817
3	0.5	-1.5	-0.9974949866040544
4	0.25	-1.5	
5	0.125	-1.625	-0.9985313405398316
6	0.0625	-1.5625	-0.9999655856782489
7	0.03125	-1.5625	
8	0.015625	-1.578125	-0.9999731453947223
9	0.0078125	-1.5703125	-0.9999998829558185
10	0.00390625	-1.5703125	
11	0.001953125	-1.5703125	
12	0.0009765625	-1.5703125	
13	0.00048828125	-1.57080078125	-0.9999999999900789

9

References

[1] https://en.wikipedia.org/wiki/Mathematical_optimization

11

None so far.

13

